Аuthorization:
Login:
Password:
  















Detailed information

 

FUZZY MATHEMATICAL MODEL OF CRACK DENSITY VARIATION IN MINERAL UNDER EXTERNAL LOADING



Based on the theory of autonomous dynamical systems, the developed mathematical model makes it possible to describe the external load-induced variation in crack density in a mineral as a textural component of half-rock. The theory enables describing the process of crack density variation in a mineral under external loading in terms of the parameter of state and an abstractfunction of time evolution of initial state. Interpretation of the phase portrait of the developed model yields a conclusion that, in conformity with the dynamics of change in crack density, there are two mechanisms of mineral disintegration in half-rocks. These mechanisms govern initiation and occurrence of rock falls on pitwall slopes. The first mechanism is failure of minerals as a result of unstable growth of cracks. The second mechanism is mineral failure due to formation of spatially distributed microcracks in its structure. It is found that in case that minerals in half-rocks composing pitwall slopes fail by the mechanism of unstable crack growth, it is advised to predict rock falls using the discrete element method. Otherwise, when half-rock minerals fail due to formation of spatially distributed microcracks (filled with water in real conditions), prediction of rock falls should use the finite element models.


For citation: Khalkechev R.K. Fuzzy mathematical model of crack density variation in mineral under external loading. MIAB. Mining Inf. Anal. Bull. 2019;(6):97-105. [In Russ]. DOI: 10.25018/0236-1493-

2019-06-0-97-105.



: 6
2019
ISBN: 0236-1493
УДК: 622.83
DOI: 10.25018/0236-1493-2019-06-0-97-105
Authors: Khalkechev R. K.

Authors' Information:
R.K. Khalkechev, Cand. Sci. (Phys. Mathem.), Assistant Professor, National University of Science and Technology «MISiS»,
119049, Moscow, Russia, e-mail: syrus@list.ru.




Key words:
Rock falls, prediction, landslide processes, crack density, finite element method, discrete element method, dynamical system, phase portrait.

References:

 1. Mirtova I. A., Shvetsov D. V. Using remote sensing
methods to monitor hazardous exogenous processes. 
Izvestiya vysshikh
uchebnykh zavedeniy. Geodeziya i aerofotos''emka
. 2016, no 4, pp. 84—89.
[In Russ].


2. Sergeev K. S., Ryzhkov V. I., Belousov A. V.,
Bobachev A. A. On experience of studying development of landfall and karst
processes by engineering geophysical methods. Inzhenernye izyskaniya.
2016, no 12, pp. 26—33. [In Russ].


3. Frukacz M., Wieser A. On the impact of rockfall
catch fences on ground-based radar interferometry. Landslides, 2017,
Vol. 14, Issue 4, pp. 1431—1440. DOI 10.1007/s10346-017-0795-x.


4. Scholtès L., Donzé F. V. A DEM analysis of
step-path failure in jointed rock slopes. Comptes 
Rendus Mécanique, 2015, Vol.
343, Issue 2, pp. 155—165. DOI 10.1016/j.crme.2014.11.002.


5. Bonilla-Sierra V., Scholtès L., Donzé F. V.,
Elmouttie M. K. Rock slope stability analysis us
ing photogrammetric data and DFN–DEM modeling. Acta
Geotechnica
, 2015, Vol. 10, Issue 4, pp. 497—511. DOI 10.1007/s11440-015-0374-z.


6. Shroder J. F., Davies T. Landslide hazards,
risks, and disasters
. Amsterdam-Oxford-Waltham: 
Elsevier, 2015. 492 p.


7. Pevzner M. ЕDeformatsii gornykh porod na kar'erakh [Deformation of
rocks in open pits], 
Moscow, Nedra, 1992, 235 p.


8. Khalkechev R. K., Khalkechev K. V. Mathematical
modeling of nonuniform elastic stress 
field in rock mass of crystal structure. Gornyy
zhurnal
. 2016, no 3, pp. 200—205. DOI 10.17580/


gzh.2016.03.05. [In Russ].


9. Khalkechev R. K. Expert system for mathematical
modeling of geomechanical processes 
in rock mass. Gornyy zhurnal. 2016, no 7,
pp. 96—98. DOI 10.17580/gzh.2016.07.21. [In Russ].


10. Anishchenko V. S. Znakomstvo s nelineynoy
dinamikoy 
[Introduction to nonlinear dynam
ics], Moscow, URSS, 2018, 224 p.


11. Khalkechev R. K., Khalkechev K. V. Development of
an automated system for determining 
the external stress field acting on a rock
massif. 
Gornyy informatsionno-analiticheskiy byulleten’2017, no 11, pp. 220—226. DOI:
10.25018/0236-1493-2017-11-0-220-226. [In Russ].


12. Piegat A. Fuzzy Modeling and Control. Heidelberg: Physica,
2001. 728 p.


Back
Site map