Detailed information



Samples of the Pechora basin coal are tested with the pre-determined uniaxial compression strength in the normal direction to bedding. The test data show that different samples have close values of the uniaxial compression strength. The laser–ultrasonic spectroscopy in the mode of automatic scanning of coal sample surface at a pitch of 1 mm visualizes the internal structure of coal. It is found that in the vertical sections of the samples, cracks are mostly horizontal in conformity with the direction of bedding. The geometrical dimension and depth of cracks are determined. Based on the precision measurements of Pand S-wave velocities, the local values of Young’s modulus and Poisson’s ratio are for the first time obtained for coal accurate to 1 and 5%, respectively. The presence of cracks from 0.5 to 3 mm long with an opening of 80–200 μm results in dispersion of Young’s modulus and Poisson’s ratio in the ranges from 6.81 to 7.25 GPa and from 0.23 to 0.29. By the calculated values, the map of Young’s modulus distribution over sample surface is plotted.

Acknowledgements: This study was supported by the Russian Foundation for Basic Research, Project No. 19-05-00824.

For citation: Kravtsov A., Ivanov P. N., Malinnikova O. N., Cherepetskaya Е. B., Gapeev A. A. Laser–ultrasonic spectroscopy of the Pechora basin coal microstructure. MIAB. Mining Inf. Anal. Bull. 2019;(6):56-65. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-56-65.

: 6
ISBN: 0236-1493
УДК: 622.33+620.179.16
DOI: 10.25018/0236-1493-2019-06-0-56-65
Authors: Kravtsov A., Ivanov P. N., Malinnikova O. N., etc.

Authors' Information:
A. Kravtsov, PhD, e-mail: kravtale@fsv.cvut.cz,
Department of Construction Technology, Faculty of Civil Engineering in Prague, Thákurova 7/2077, 166 29 Prague 6 — Dejvice, Czech Republic,
P.N. Ivanov (1), Engineer, e-mail: pavelnivanov@mail.ru,
O.N. Malinnikova, Dr. Sci. (Eng.), e-mail: olga_malinnikova@mail.ru, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia,
Е.B. Cherepetskaya (1), Dr. Sci. (Eng.), Chief Researcher, e-mail: echerepetskaya@mail.ru,
A.A. Gapeev (1) — Student, e-mail: tema.gapeev135@yandex.ru,
1) Mining Institute, National University of Science and Technology «MISiS»,
119049, Moscow, Russia.

Corresponding author: P.N. Ivanov, e-mail: pavelnivanov@mail.ru.

Key words:
Laser–ultrasonic structurescopy, X-ray tomography, coal, geodynamic phenomena, methane, local elasticity moduli.


1. Malyshev Yu. N., Ayruni A. T., Khudin Yu. L. Metody
prognozirovaniya i sposoby predotvrashcheniya vybrosov gaza, uglya i gornykh
[Gas, coal and rock outbursts: prediction methods and prevention techniques], Moscow, Nedra, 1995, 352 p.

2. Prognoz i predotvrashchenie gornykh udarov
v shakhtakh 
[Prediction and prevention of rock bursts in mines. I.Kh.
Petukhov, A.M. Il'in, K. N. Trubetskaya (Eds.)], Moscow, Izdatel'stvo AGN,
1997, 376 p.

3. Malinnikova O. N., Uchaev D. M., Uchaev D. V.
Multi-fractal assessment of gas-dynamic hazard of coal seams. Gornyy
informatsionno-analiticheskiy byulleten’
. 2009, no 12, pp. 214—232. [In

4. Gornoe delo. Dinamicheskie yavleniya v
ugol'nykh shakhtakh. Terminy i opredeleniya. GOST R 58150-2018 
Dynamic phenomena in coal mines. Terms and definitions. State Standart R

5. Starikov A. P., Zborshchik M. P., Pilyugin V. I.
Gas-dynamic phenomena in coal mines: implications, control and hazard
reduction. Ugol'. 2010, no 12, pp. 5—8. [In Russ].

6. Kuchurin S. V., Shkuratnik V. L., Vinnikov V. A.
Regularities of influence of disturbances on thermal emission memory in coal
specimens. Journal of Mining Science, 2008, 44 (2), pp. 131—137.

7. Guo W.-Y., Zhao T.-B., Tan Y.-L., Yu, F.-H. Hu,
S.-C. Yang F.-Q. Progressive mitigation method of rock bursts under complicated
geological conditions. International Journal of Rock Mechanics and
Mining Sciences
, 2017, pp. 11—22.

8. Lihai Tan, Ting Ren, Xiaohan Yang, Xueqiu He. A
numerical simulation study on mechanical behaviour of coal with bedding planes
under coupled static and dynamic load. International Journal of Mining
Science and Technology
, 28 (2018), pp. 791—797.

9. Dudchenko O. L., Fedorov G. B., Andreev A. A.
Innovative method for the classification of coal slurries. Ugol', 6
(2018), pp. 67—71.

10. Yang W., Wang H., Lin B., Wang Y., Mao X., Zhang
J., Lyu Y., Wang M. Outburst mechanism of tunnelling through coal seams and the
safety strategy by using «strong-weak» coupling circlelayers. Tunnelling
and Underground Space Technology
, 2018, 74, pp. 107—118.

11. Yang S.-Q., Chen M., Jing H.-W., Chen K.-F., Meng
B. A case study on large deformation failure mechanism of deep soft rock
roadway in Xin'An coal mine, China. Engineering Geology
2017, 217, pp. 89—101.

12. Oparin V. N., Kiryaeva T. A., Usol'tseva O. M.,
Tsoy P. A., Semenov V. N. Nonlinear deforma
tion–wave processes in various rank coal samples
loading to failure under different tempera
tures. Fiziko-tekhnicheskiye problemy
razrabotki poleznykh iskopayemykh
. 2015, no 4, pp. 641—658. [In Russ].

13. Qin Zhihong New advances in coal structure
model. International Journal of Mining Sci
ence and Technology, 2018, pp.

14. Qin Z.-H., Gong T., Li X.-S., Hou C.-L., Zhang D.,
Sun H. TEM analysis of coal extraction and 
coal inbuilt state structural model. Zhongguo Kuangye
Daxue Xuebao. 
Journal of China University of Mining and Technology,
2008, 37 (4), pp. 443—449.

15. Jonathan P. Mathewsa, Quentin P. Campbellb, Hao
Xuc, Phillip Halleck. A review of the 
application of X-ray computed
tomography to the study of coal. Fuel, 2017, pp. 10—24.

16. Zhang G., Ranjith P. G., Perera M. S. A., Haque
A., Choi X., Sampath. Characterization of 
coal porosity and permeability evolution by
demineralisation using image processing techniques. 
A micro-computed tomography study. Journal of
Natural Gas Science and Engineering
, 2018, 
pp. 384—396.

17. Vaysberg L. A., Kameneva Е. Е. Взаимосвязь структурных особенностей и
механических свойств горных пород. Gornyy zhurnal. 2017, no 9, pp. 53—58. [In Russ].

18. Haibo Wu, Shouhua Dong, Donghui Li, Yaping Huang,
Xuemei Qi Experimental study 
on dynamic elastic parameters of coal samples. International
Journal of Mining Science and 
Technology, 2015, vol. 25, no.
3, pp. 447—452.

19. Podymova N. B., Karabutov A. A., Cherepetskaya E.
B. Laser optoacoustic method for 
quantitative nondestructive evaluation of the
subsurface damage depth in ground silicon wafers. 
Laser Physics, 2014, Vol. 24,
no. 8, pp. 086003(1)–086003(5).

20. Kravcov A., Svoboda P., Konvalinka A.,
Cherepetskaya E. B., Karabutov A. A., Morozov D. V., 
Shibaev I. A. Laser-ultrasonic testing of the
structure and properties of concrete and carbon fiber-
reinforced plastics. Key Engineering Materials,
2017, 722, pp. 267—272.

21. Karabutov A. A., Cherepetskaya E. B., Podymova N.
B. Laser-ultrasonic measurement of 
local elastic moduli. NDT in Progress 2015.
8th International Workshop of NDT Experts, Proceed
ings, 2015, pp. 75—78.

Site map