Detailed information



The drainage system of the Grib deposit with implemented combined dehydrating is analyzed. Aimed to reduce water head in pitwall rock mass, as the depth of the open pit increases, horizontal drainage holes will be drilling from lower berms. Predictive designs of horizontal holes using numerical geo-flow modeling have no appropriate validation procedures. The authors have set and performed numerical experiments in VisualModflow environment in order to validate modeling procedure for horizontal drains. The key objective of the numerical experimentation is to determine conditions at hydrodynamic boundary of drains versus discreteness and geometry of numerical model, as well as parameters of a model horizontal hole. The numerical experimentation reference was chosen to be a horizontal drain hole with a length of 150 m and diameter of 0.2 m. By comparing heads and flow rates with the reference values, the hydrodynamic boundary conditions of drains were selected. The interaction of the above listed parameters is described, and the general recommendations are given for correct finite-element modeling of drain holes.

For citation: Kotlov S. N., Shamshev А. A. Numerical geo-flow modeling of horizontal drainage holes. MIAB. Mining Inf. Anal. Bull. 2019;(6):45-55. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-45-55.

: 6
ISBN: 0236-1493
УДК: 556.3.06, 556.3.07
DOI: 10.25018/0236-1493-2019-06-0-45-55
Authors: Kotlov S. N., Shamshev А. A.

Authors' Information:
S.N. Kotlov, Cand. Sci. (Geol. Mineral.), Senior Researcher,
А.A. Shamshev, Engineer,
e-mail: Artemiy.Shamshev@gmail.com,
Saint Petersburg Mining University,
199106, Saint-Petersburg, Russia.
Corresponding author: А.A. Shamshev, e-mail: Artemiy.Shamshev@gmail.com.

Key words:
Prediction of water inflow in mines, horizontal drain holes. Numerical geo-flow modeling, hydrogeological conditions, induced groundwater regime.


1. Norvatov Yu. A. Izuchenie i prognoz
tekhnogennogo rezhima podzemnyh vod 
[Study and forecast of man-made
groundwater regime], Leningrad, Nedra, 1988, 261 p.

2. Bakshevskaya V. A., Pozdnyakov S. P. Methods for
modeling geofiltration sedimentation heterogeneity. Geoekologiya. Inzhenernaya
geologiya, gidrogeologiya, geokriologiya
. 2012, no 6, pp. 560—570. [In

3. Arsent'ev A.I., Bukin I.Yu., Mironenko V. A. Ustoichivost'
bortov i osushenie kar'erov 
[Open pit wall stability and drainage of
quarries], Moscow, Nedra, 1982, 165 p.

4. Chambers J. E., Meldrum I. P., Uhlemann S. Spatial
monitoring of groundwater drawdown and rebound associated with quarry
dewatering using automated time-lapse electrical resistivity tomography and
distribution guided clustering. Engineering Geology. 2015, no 193.
Pp. 412—420.

5. Batrak G. I., Toms L. S. Hydrogeological
calculations for drainage optimization. Monitoring. Nauka i tekhnologii.
2015, no 2(23), pp. 6—14. [In Russ].

6. Semenchuk A. V. Interpretation of the pilot
filtration works results using the method of mathematical modeling to
substantiate the parametric base of the numerical geofiltration model. Regional'naya
geologiya i metallogeniya
. 2017, no 1, pp. 75—83. [In Russ].

7. Aaron G. Smith, Stephen R. Howles, Don Armstrong
Loxton trial horizontal drainage well: hydraulics and effectiveness in
controlling groundwater flux entering the River Murray. MESA Journal.
2007, no 47.

8. Mironenko V. A., Rusanov I. V. Filtration
evaluation of horizontal wells in mining drainage. Geologiya i razvedka.
1997, no 3, pp. 127—138. [In Russ].

9. Kravchuk S. V. Raschet sistem
gorizontal'nykh drenazhnykh skvazhin pri zashchite bortov kar'erov ot
podzemnykh vod 
[Calculation of horizontal well systems in the
protection of airborne quarries from groundwater]. Belgorod, VIOGEM, 1969, 79

10. Shamshev A. A., Kotlov S. N. Improving the
methodology for assessing the filtration parameters of low-permeable
anisotropic sediments based on experimental filtration observations. Gornyy
informatsionno-analiticheskiy byulleten’
. 2017, no 10, pp. 194—204. [In

11. Kotlov S., Saveliev D., Shamshev A. Peculiarities
of numerical modeling of the conditions for the formation of water inflows into
open-pit workings when constructing the protective watertight structures at the
Koashvinsky quarry. In V. Litvinenko (ed.) Eurock2018: Geomechanics and
geodynamics of rock masses. Proceedings of the 2018 European rock mechanics
, 2018, pp. 827—832.

12. Voronin A. A. New way of drainage the open pit
walls to increase their sustainability. Deposited manuscript, no 1071/6—16 from
14 March 2016. Gornyy informatsionno-analiticheskiy byulleten’.
2016, no 6, pp. 105. [In Russ].

13. Voronin A. A., Ponomarenko Yu. V. The
effectiveness of horizontal drainage wells when draining open pit walls. Nauchnye
vedomosti. Seriya Estestvennye nauki
. 2011, no 21 (116).
Вып. 17, pp. 179—182.

14. Lomakin E. A., Mironenko V. A., Shestakov V.
M. Chislennoe modelirovanie geofil'tratsii [Numerical modeling of
geofiltration]. Moscow, Nedra, 1988, 228 p.

15. Usman M., Arshad M., Liedl R., Conrad C. 3-D
numerical modelling of groundwater flow for scenario-based analysis and
management. Water, 2018, Vol. 44, Issue 2. Pp. 146—154.

16. Qi Y., Wang Y., Zhang J. Three-dimensional
turbulence numerical simulation of flow in a stepped dropshaft. Water,
2018, Vol. 11, Issue 1.

17. Smaoui H., Ouahsine A., Zouhri L., Carlier E.
Modelling of groundwater flow in heterogeneous media by finite element
method. Hydrological Processes. 2012, no 26(4). Pp. 558—569.

18. Molokova N. V. Solving geofiltration problems
using mathematical modeling. Vestnik Sibirskogo gosudarstvennogo
aerokosmicheskogo universiteta im. Akademika M.F. Reshetneva.
2008, no
3(20), pp. 31—34. [In Russ].


Site map