uthorization:
Login:
Password:
  















 

Detailed information

 

CLUSTERING ALGORITHMS IN EXPRESS-ANALYSIS OF SEISMIC DATA



A grand problem in continuous geomonitoring is constituted by a huge amount of accumulated data to be analyzed and interpreted. In this regard, it is relevant to carry out the preliminary express-analyses of data in order to select representative points to be in spotlight in the first place in the studied rock mass. By way of approach to this problem solution, the authors propose the clustering analysis which produces clustering centers usable as representative points. The scope of the discussion embraces three clustering algorithms: k-means, Mean Shift and DBSCAN. Their efficiency and suitability to the seismic data analysis is assessed by comparing the results of the algorithms with the representative points found by expert for the pre-assigned set of data. The quality of the clustering procedure is evaluated by the Calinski–Harabasz and Davies–Bouldin indexes, as well as the silhouette coefficient. The set of the seismic data was composed of numerical values of stress state (rock pressure) and fluid flow potential in rock mass obtained in local prediction. The obtained results allow concluding that the best clustering algorithm is DBSCAN, and it is applicable to preliminary express-analysis of seismic data.


For citation: Abdrakhmanov M. I., Lapin S. E., Shnayder I. V. Clustering algorithms in express-analysis of seismic data. MIAB. Mining Inf. Anal. Bull. 2019;(6):27-44. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-27-44.



: 6
2019
ISBN: 0236-1493
: 622.817.4
DOI: 10.25018/0236-1493-2019-06-0-27-44
Authors: Abdrakhmanov M. I., Lapin S. E., Shnayder I. V.

Authors' Information:
M.I. Abdrakhmanov, Cand. Sci. (Eng.), Chief Specialist, e-mail: marat-ab@mail.ru,
LLC Information mining technologies, Ekaterinburg, Russia,
S.E. Lapin (1), Cand. Sci. (Eng.), Senior Researcher, e-mail: sergei.l@bk.ru,
I.V. Shnayder (1), Graduate Student,
1) Ural State Mining University, 620144, Ekaterinburg, Russia.
Corresponding author: M.I. Abdrakhmanov, e-mail: marat-ab@mail.ru.


Key words:
Geomonitoring, seismic data analysis, clustering analysis, express-analysis, clustering metrics.

References:

1. Prikaz Rostekhnadzora ot 19.11.2013 550
«Ob utverzhdenii Federal'nykh norm i pravil v oblasti promyshlennoy
bezopasnosti «Pravila bezopasnosti v ugol'nykh shakhtakh» 
[Approval of
Federal Code on Industrial Safety: Safety Regulations for Coal Mines.
Rostekhnadzor Order No. 550 dated November 19, 2013]. [In Russ].


2. Official site OOO «INGORTEH»,
http://ingortech.ru/produktsiya/statsionarnye-sistemy/paragraf-41-pb/kontrol-gornogo-massiva-p-41-pb.


3. Patent US6498989,
https://patents.google.com/patent/US6498989.


4. Lapin E. S., Pisetskiy V. B., Babenko A. G.,
Patrushev Yu. V. Mikon-GEO—on-line detection and monitoring of hazardous
geo-gas-dynamic event initiation and growth in underground mineral
mining. Bezopasnost' truda v promyshlennosti. 2012, no 4, pp.
18—22. [In Russ].


5. Calinski T., Harabasz J. A dendrite method for
cluster analysis. Communications in Statistics. 1974, vol. 3, pp.
1—27.


6. Davies D. L., Bouldin D. W. A Cluster Separation
Measure. IEEE Transactions on Pattern Analysis and Machine
Intelligence. PAMI-1. 1979, pp. 224—227.


7. Rousseeuw P. J. Silhouettes: a Graphical
Aid to the Interpretation and Validation of Cluster
Analysis. Computational
and Applied Mathematics 20. 1987, pp. 53—65.


8. Lloyd S. Least square quantization in PCM’s. IEEE
Transactions on Information Theory
. vol. 28, pp. 129—137.


9. Comaniciu D., Meer P. Mean shift. A robust approach
toward feature space analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence
, 2002.


10. Ester M., Kriegel H. P., Sander J., Xu X. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, Portland
, OR, AAAI Press., 1996, pp.
226—231.


11. Sebastian Raschka. Python Machine Learning,
1st Edition. Packt Publishing Ltd. 2015, 454 p.


12. Arthur D., Vassilvitskii S. k-means++: The
advantages of careful seeding. Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms
, Society for Industrial and
Applied Mathematics. 2007, pp. 1027—1035.


13. Sander J., Ester M., Kriegel H. P., Xu X. Density-Based
Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications.
Data Mining and Knowledge Discovery
. Berlin: Springer-Verlag. 1998 (2), pp.
169—194.


14. Brendan J. F., Delbert D. Clustering by passing
messages between data points. Science. 2007. No 15, pp. 972—979.


15. Ng A., Jordan M., Weiss Y. On spectral clustering:
analysis and an algorithm. NIPS'01 Proceedings of the 14th
International Conference on Neural Information Processing Systems: Natural and
Synthetic. 2001, pp. 849—856.


16. Amorim R. C., Hennig C. Recovering the
number of clusters in data sets with noise features using feature rescaling
factors
. Information Sciences. 324. 2015. 126—145.


17. Hamerly G., Drake J. Accelerating Lloyd's
algorithm for k-means clustering. PartitionalClustering Algorithms.
2015, pp. 41—78.


18. Campello R. J. G. B., Moulavi D, Zimek A., Sander
J. Hierarchical Density Estimates for Data Clustering, Visualization, and
Outlier Detection. ACM Transactions on Knowledge Discovery from Data.
2015. vol 10, pp. 5:1—5:51.


19. Pisetskiy V. B., Lapin S. E., Zudilin A. E.,
Patrushev Yu. V., Shnayder I. V. Procedure and commercial application results
of Mikon-GEO seismic monitoring system in underground mining of ore and coal
deposits. Problemy nedropol'zovaniya. 2016, pp. 58—64. [In Russ].


20. Pisetskiy V. B., Robert Huang, Patrushev Yu. V.,
Zudilin A. E., Shnayder I. V., Shirobokov M. P. Test data of seismic monitoring
systems for rock mass stability in construction of highway tunnels in
China. Dobyvayushchaya promyshlennost'. 2017, no 2 (06), pp. 108.
[In Russ].


21. Pisetskiy V. B., Vlasov V. V., CHerepanov V. P.,
Abaturova I. V., Zudilin A. E., Patrushev Yu. V., Aleksandrova A. V. Rock mass
stability prediction based on seismic location method in underground
construction. Inzhenernye izyskaniya. 2014, no 9—10, pp. 46—51. [In
Russ].


22. Yakovlev D. V., Lazarevich T. I., Polyakov A. N.
Principles of constructing rock mass monitoring systems based on analysis of
actual risks in underground mineral mining. Gornyy
informatsionno-analiticheskiy byulleten’
. 2015. Special edition 7, pp.
471—481.
[In Russ].


Back
Site map