Detailed information



The distributed point source method (DPSM) can be used to locate secondary charges induced at interfaces of media with different conduction in rock masses. The method allows delineating zones of low-amplitude discontinuity by the data of underground resistivity prospecting. DPSM is based on the fundamental solution of the Laplace equation. By electrical measurements, a system of linear equations is built; the number of the equations is governed by the number of measurement points in the electrical survey line, which limits the location domain of secondary charges. The location domain is selected based on the assumption of adjacency to the maximum anomalous signal which is determined as a difference of measured potentials on the electrical survey lines in the damaged and intact rock mass. A low-amplitude discontinuity changes resistance at the coal–enclosing rock interface; thus, it is assumable that the secondary charges locate in the plane of seam. For the obtained electrical data, a system of equations is constructed. The correct solution of the system is possible if the minimum distance R between the measurement point and the calculation domain in nonzero. The system solution provides values of secondary charges the coordinates of which are pegged to centers of cells in the meshed calculation domain. The number of cells equals the number of equations in the system. The calculated data are compared with a certain threshold and the lower values are nulled, which allows a more distinct delineation of the anomalous zone. Using DPSM together with the analytical extension method improves efficiency and reliability of resistivity section of a test area in coal seam. The analytical extension method determines the anomalous zone center and, thus, the calculation domain location, while DPSM delineates the latter domain. All calculations are performed in MatLab.

For citation: Gaysin R.M., Tsarikov A.Yu. Location of damage zones in coal seams by underground resistivity prospecting. MIAB. Mining Inf. Anal. Bull. 2019;(6):19-26. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-19-26.

: 6
ISBN: 0236-1493
УДК: 550.837.31
DOI: 10.25018/0236-1493-2019-06-0-19-26
Authors: Gaysin R. M., Tsarikov A. Yu.

Authors' Information:
R.M. Gaysin, Cand. Sci. (Eng.), Assistant Professor, e-mail: rmgaisin@mail.ru,
A.Yu. Tsarikov, Graduate Student, e-mail: zarikov92@mail.ru,
National University of Science and Technology «MISiS»,
119049, Moscow, Russia.

Corresponding author: R.M. Gaysin, e-mail: rmgaisin@mail.ru.

Key words:
Low-amplitude tectonic discontinuity, distributed point source method, fundamental solution of the Laplace equation, underground resistivity prospecting, equatorial dipole electric sounding, analytical extension method, continued fractions, Matlab.


1. Baykenzhina A. Zh. Detection and mapping of
tectonic faults as indicators of outburst-hazardous zones by 3D common-depth
point method in the conditions of the Karaganda coal basin. Izvestiya
Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. Vol.
329, no 8.
Рp. 145—155. [In Russ].

2. Cao Y., Davis A., Liu R., Liu X., Zhang Y. The
influence of tectonic deformation on some geochemical properties of coals — a
possible indicator of outburst potential. International journal of coal
. 2003. Vol. 53. Iss. 2.
Рp. 69—79.

3. Kirzhner F. M., Skuba V. N., Kozionov Е. N. Tekhnologiya razrabotki narushennykh ugol'nykh plastov [Mining
technology for faulted coal seams], Yakutsk, Izd-vo YAF SO AN SSSR, 1983.

4. Revnivykh Yu. A. Otsenka vliyaniya
geologicheskikh narusheniy pologikh ugol'nykh plastov na tekhnologiyu i
tekhniku mekhanizatsii ochistnykh rabot (na primere shakht Vostochnogo
[Influence of geological faults in flat coal seams on
longwall mechanization technology and equipment (in terms of mines in the East
Donbass)], Candidate’s thesis, Moscow, MGI, 1973.

5. Gaysin R. M., Nabatov V. V., Potapov P. V.,
Tsarikov A. Yu. Modeling of electric fields in underground resistivity
survey. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no
9, pp. 5—10. [In Russ].

6. Bakhvalov Yu. A., Shcherbakov A. A. Solution of
applied problems using the field point source method. Izvestiya
vysshikh uchebnykh zavedeniy. Elektromekhanika
. 2016, no 4, pp. 5—14. [In

7. Alves C. J. S., Chen C. S., Sarler B. The method of
fundamental solutions for solving Poisson’s problems. Boundary Elements,
Vol. XXIV, eds. C. Brebbia, A. Tadeu and V. Popov (WIT Press, 2002) pp. 67—76.

8. Fairweather G., Karageorghis A. The method of
fundamental solutions for elliptic boundary value problems. Advances in
Computational Mathematics
. 1998. Vol. 9. Pp. 69—9. Computers &
Geosciences. Vol. 49, December 2012, Pp. 278—289. Regcont: A Matlab based
program for sta
ble downward continuation of
geophysical potential fields using Tikhonov regularization. Author links open
overlay panel R. Paštekaa, R. Karcolb, D. Kušniráka, A. Mojzeša.

10. Shestakov A. F. O kontseptsii osobykh
tochek analiticheskogo prodolzheniya geofizicheskikh poley i razvitii metodov
ikh opredeleniya s ispol'zovaniem gasyashchikh funktsiy [Concept
special points in analytical extension of geophysical fields and development of
determination method using suppressing functions],
Еkaterinburg, Institut geofiziki UrO RAN, 2013.

11. Ermokhine K. M. Analytical continuation of
geophysical fields into the area of anomaly
sources by the Continued
fraction method (CFCM). Vienne, EAGE2006, abstr. P. 324.

12. Ermokhin K. M. Analytical extension of geophysical
fields in the zone of abnormality sources using continued fractions. Voprosy
teorii i praktiki interpretatsii gravitatsionnykh, magnitnykh
elektricheskikh poley: materialy 34 seminara im. D.G. Uspenskogo. Moscow, IFZ
RAN, 2007.
Pp. 109—113. [In Russ].

13. Еrmokhin K. M.,
Zhdanova L. A. Efficient method of analytical extension of model and real geophysical
fields in the domain of sources. Voprosy teorii i praktiki
interpretatsii gravitatsion-
nykh, magnitnykh i elektricheskikh poley:
materialy 34 seminara im. D.G. Uspenskogo. Moscow,
IFZ RAN, 2010. [In Russ].

14. Gaysin R. M., Nabatov V. V. Identification of
anomalous zones in underground resistivity survey by analytical extension
method. Gornyy informatsionno-analiticheskiy byulleten’. 2018,
no 6, pp. 107—112. DOI: 10.25018/0236-1493-2018-6-0-107-112. [In Russ].


Site map