Detailed information



The review of the national and international experience shows that the traditional methods of rock salt leaching during construction of underground storage facilities for gas and liquid fuel fall short of the actual level of mining technology and equipment. Many research institutions strive for improving methods and means of in-situ leaching of rock salt using bore holes drilled from ground surface. An innovative method is proposed for construction of underground structures using acoustic vibrations. A creative element of the proposition is hydrodynamic rotary radiator generating acoustic vibrations. In this case, at the phase interface (liquid–rock salt), specific phenomena arise and accelerate rock salt dissolution. The design and operation principle of the hydrodynamic rotary radiator are described. The design provides adjustment of acoustic vibration frequency, which enables generation of resonance oscillations. The lab-scale investigations into intensification of rock salt leaching with the developed hydrodynamic rotary radiator are reported. It is found that the salt dissolution rate depends on the acoustic pressure amplitude at the phase interface. The investigations show that high-power acoustic vibrations within a frequency band of 500–3000 Hz intensifies the process of salt dissolution by 1.5 times and more. The investigations prove efficiency of acoustic vibrations in construction of underground storage facilities in rock salt.

For citation: Fedorov G. B., Dudchenko O. L., Kurenkov D. S. Construction of underground structures in saline deposits using acoustic vibrations. Gornyy informatsionno-analiticheskiy byulleten'. 2019;5:149-155. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-149-155.


: 5
ISBN: 0236-1493
УДК: 622.692.24
DOI: 10.25018/0236-1493-2019-05-0-149-155
Authors: Fedorov G. B., Dudchenko O. L., Kurenkov D. S.

Authors' Information:
G.B. Fedorov, Candidate of Technical Sciences,
Assistant Professor, e-mail: gbfedorov1947@gmail.com,
O.L. Dudchenko, Candidate of Technical Sciences,
Assistant Professor, e-mail: dionis_4444@mail.ru,
D.S. Kurenkov, Graduate Student, e-mail: kurenkov@misis.ru,
National University of Science and Technology «MISiS»,
119049, Moscow, Russia
Corresponding author: D.S. Kurenkov, e-mail: kurenkov@misis.ru.

Key words:
Hydrodynamic rotary horn, rock salt dissolution speed-up, resonant mode of exposure, boundary diffusion layer breakage.


1.        Arens V. Zh., Gridin O. M., Kreynin E. V., Nebera V. P., Fazlullin M. I., Khrulev A. S., Khcheyan G. Kh. Fiziko-khimicheskaya geotekhnologiya: Uchebnik dlya vuzov [Physical and chemical geotechnology: Textbook for high schools], Moscow, Izd-vo MGGU, 2010, 575 p.


2.        Kozlov V. A. The method of calculating the moisture of coal sludge sediment in filter centrifuges. Ugol'. 2016, no 6, pp. 12—15. DOI: 10.18796/0041-5790-2016-6-12-15. [In Russ].


3.        Kozlov V. A. The process of dewatering fine coal and coal sludge in filter centrifuges. Ugol'. 2016, no 5, pp. 91—93. DOI: 10.18796/0041-5790-2016-5-91-93. [In Russ].


4.        Dudchenko O. L., Fedorov G. B., Andreev A. A. Innovative method for classification of coal slurries. Ugol'. 2018, no 6, pp. 67—71. DOI: 10.18796/0041-5790-2018-6-67-71. [In Russ].


5.        Anushenkov A. N., Rostovtsev V. I., Frizorger V. K. Modification of coal tar pitch in hydropercussion-cavitation field. Fiziko-tehnicheskie problemy razrabotki poleznyh iskopaemyh. 2009, no 5, pp. 110—118. [In Russ].


6. Antipenko L.A. On the issue of advanced coal processing and beneficiation technologies. Ugol'. 2015, no 12, pp. 68—72. DOI: 10.18796/0041-5790-2015-12-68-71. [In Russ].


7.        Fedorov G. B., Dudchenko O. L., Kurenkov D. S. Development of vibroacoustic module for fine filtration of drilling muds. Journal of Mining Institute, 2018, Vol. 234, pp. 647—651. DOI: 10.31897/PMI.2018.6.647.


8.        Fedorov G. B., Dudchenko O. L., Kurenkov D. S. Vibroacoustic module for waste-water treatment of mining enterprises. Scientific Reports on Resource Issues: Conference Proceedings. Vol. 1, Freiberg, 2018. pp. 339—344.


9.        Ksenofontov B. S., Ivanov M. V. Case study: Use of flotation for industrial stormwater treatment. Water Practice and Technology, 2014, 9 (3), pp. 392—397. DOI: 10.2166/wpt.2014.043.


10.     Ksenofontov B. S., Ivanov M.V. Intensification of flotation treatment by exposure to vibration. Water Science and Technology, 2014, 69 (7), pp. 1434—1439. DOI:10.2166/wst.2014.046.


11.    Ksenofontov B. S., Ivanov M. V. A novel multistage kinetic modeling of flotation for wastewater treatment. Water Science and Technology, 2013, 68 (4), pp. 807—812. DOI: 10.2166/ wst.2013.303.


12.    Ksenofontov B. S., Antonova E. S., Ivanov M. V., Kozodaev A. S., Taranov R. A. The influence of oil contaminated soil on the quality of surface waste water. Water Practice and Technology, 2015, 10 (4), pp. 814—822. DOI: 10.2166/wpt.2015.101.

Site map