Detailed information



In the past decade, ground penetrating radar (GPR) has many times been successful in detection of defects in the space between lining and rock mass in underground mines. As a rule, it is difficult to obtain high-quality data in tunnel measurements owing to limited conditions of information gathering and due to multiple unwanted air interference, which degrades interpretations. It is almost impossible to identify deep reflections from the background in case of heavy noise. The critical tool in such case is the analysis of wave field attributes: dynamic and kinematic properties of useful signal. This article gives an example of GPR sounding using different types of antenna assemblies with automatic analysis of the backscattered field quality. Under comparison are the cross sections obtained in the test monitoring of the lining/rock interface after injection reinforcement of weakened zone behind the tunnel lining in the Saint-Petersburg Metro. The results show that the attribute analysis improves quality of GPR data interpretation and is an efficient method of detecting defects at the lining–soil interface.

For citation: Andrianov S. V. Мониторинг состояния заобделочного пространства горных выработок методом георадиолокации. Gornyy informatsionno-analiticheskiy byulleten'. 2019;5:124132. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-124-132.

: 5
ISBN: 0236-1493
УДК: 550.3:624.191.22
DOI: 10.25018/0236-1493-2019-05-0-124-132
Authors: Andrianov S. V.

Authors' Information:
S.V. Andrianov, Junior Researcher, e-mail: andrianovsemen@gmail.com,
OJSC «SRPSI «Lenmetrogiprotrans», 191002, Saint-Petersburg, Russia.

Key words:
Ground penetrating radar, attribute analysis, diffraction, backscattered field, tunnel, reinforced concrete lining.


1.        Tonneli i metropoliteny. Pravila obsledovaniya i ustraneniya defektov i povrezhdeniy pri ekspluatatsii GOST R 57208-2016 [Tunnels and subways. Regulations for inspection and elimination of defects and damages during operation. State Standart R 57208-2016].


2. Zemlyanye sooruzheniya, osnovaniya i fundamenty SP 45.13330.2017 (SNiP 3.02.0187) [Earth structures, basements and foundations СП 45.13330.2017 (Construction norms and regulations SNiP 3.02.01-87)].


3.        Feng K., Zhao Y., Wu J., Ge S. Cross-correlation attribute analysis of GPR data for tunnel engineering. 15th International Conference on Ground Penetrating Radar (GPR), IEEE. 2014. pp. 435—440.


4.        Vladov M. L., Starovoytov A. V. Vvedenie v georadiolokatsiyu. Uchebnoe posobie [Introduction to ground penetrating radar. Educational aid], Moscow, Izd-vo Moskovskogo Universiteta, 2004, pp. 52—60.


5.        Xiongyao X., Li Z., Biao Z. Real-time detection technlogy of synchronus grouting for shield tunnel and analysis of grouting effect. 17th International Conference on Ground Penetrating Radar (GPR), IEEE. 2018. pp. 405—410.


6.        Poomvises, Nppadol, Anchalee Kongsuk, Prateep Pakdeerod, Tanapon Suklim. Application of Ground Penetrating Radar and Hilbert transformation helps revealing anmalous body of leakage in a concrete structure. A case history at Huai Mae Tor, Tak province, Thailand. 17th International Conference on Ground Penetrating Radar (GPR), IEEE. 2018. pp. 427—430.


7.        Nabatov V. V., Gaysin R. M., Nikolenko P. V. Leakage flow location by GPR in underground construction and operation. Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 7, pp. 161—167. [In Russ].


8.  Parkinson G., Ekes C. Ground penetrating radar evaluation of concrete tunnels linings.12th International Conference on Ground Penetrating Radar (GPR), IEEE. 2008. p. 11.


9.        Nabatov V. V., Gaysin R. M. Ground penetrating radar survey data processing in void detection in the space between lining and rock. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 1, pp. 19—25. [In Russ].


10.        Vladov M. L., Sudakova M. S. Georadiolokatsiya. Ot fizicheskikh osnov do perspektivnykh napravleniy. Uchebnoe posobie [GPR. Ground penetrating radar. From basic physics to future tends. Educational aid], Moscow, Izd-vo «GEOS», 2017. C. 186.


11.    Subrahmanyam D., Rao P. H. Seismic attributes— A review. 7th International Conference & Exposition on Petroleum Geophysics, Hyderabad 2008, pp. 398—404.


12.    Denisov R. R., Kapustin V. V. Automatic-mode data processing. Geofizika. 2010, no 4, pp. 76—80. [In Russ].


13.    Deming R., Devaney A. J. A filtered backpropagation algorithm for GPR. Journal of Environmental and Engineering Geophysics. 1996 Jan 1;1(B):113—123.


14.    Pudova N., Shirobokov M., Kuvaldin A. Application of the Attribute Analysis for Interpretation of GPR Survey Data. 17th International Conference on Ground Penetrating Radar (GPR), IEEE. 2018. pp. 590—593.


15. Gaponov D. A., Fomenko L. N. Application of GPR to control quality of soil reinforcement. Inzhenernyy vestnik Dona. 2016, no 3, pp. 68. [In Russ].


16.    Andrianov S. V. Lining/rock interface reinforcement control by GPR in terms of subway tunnels. Trudy Mezhdunarodnoy geologo-geofizicheskoy konferentsii «Geoevraziya 2018. Sovremennye metody izucheniya i osvoeniya nedr Evrazii». Moscow, Izd-vo «PoliPRESS», 2018, pp. 623—626. [In Russ].


17.    Fomenko N. E., Gaponov D. A., Kapustin V. V. Ground penetrating radar method capacities in diagnostic study of retention walls and enclosing structures. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2017. Vol. 328, no 3, pp. 37—45. [In Russ].


18.    Andrianov S. V. Case study: GPR in quality evaluation of soil injection reinforcement. Materialy dokladov XIV Obshcherossiyskoy nauchno-prakticheskoy konferentsii i vystavki «Perspektivy razvitiya inzhenernykh izyskaniy v stroitel'stve v Rossiyskoy Federatsii». Moscow, 2018, pp. 365—368. [In Russ].

Site map