Detailed information



Megacities currently expand through development of underground space with a view to constructing transportation routes, underground parking areas, commercial areas, etc. In the course of implementation of such projects, the risk of accidents and damage of surface site development in the influence zone of underground construction considerably elevates. The accident risk reduction potential appears only with comprehensive analysis of the specific situation, with finding and minimizing adverse factors that affect the existing building system or a new construction site [1, 2]. Application of geophysical methods for integrated assessment of enclosing rock mass considerably improves operational efficiency and objectiveness of geotechnical monitoring in whole. The method of borehole-to-borehole seismic sounding (BSS) is advantageous for fine resolution and applicability at any depth, event in the space-limited urban environment. The article describes BSS application in assessment of physical state of soil area below surface site with deformation phenomena caused by an accident during subway construction. The benefits of 3D BSS representations in detection of local anomalies in cross-sections are demonstrated.

For citation: Dorokhin . . Experience of borehole seismic sounding for the assessment of physical state of rock mass using 2D and 3D representations. Gornyy informatsionno-analiticheskiy byulleten'. 2019;5:80-88. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-80-88.

: 5
ISBN: 0236-1493
: 550.834.015
DOI: 10.25018/0236-1493-2019-05-0-80-88
Authors: Dorokhin . .

Authors' Information:
.. Dorokhin, Candidate of Technical Sciences, Head of Laboratory, e-mail: d.k_a@mail.ru, OJSC SRPSI Lenmetrogiprotrans,
191002, Saint-Petersburg, Russia.

Key words:
Borehole-to-borehole seismic sounding, borehole, borehole seismic cable, impulse generator, seismic tomography, tunnel, geological environment, seismic source, fan observation pattern.


1. Ulitskiy V. M., Shashkin A. G., Shashkin K. G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov. Prakticheskoe posobie po proektirovaniyu zdaniy i podzemnykh sooruzheniy v usloviyakh plotnoy zastroyki [Geotechnical support of urban development. Practical guide on design of buildings and underground structures in the conditions of compact planning], Saint-Petersburg,


«Stroyizdat Severo-Zapad», Izd-vo «Gruppa kompaniy «Georekonstruktsiya», 2010, 547 p.


2. Petrukhin V. P. Geotechnical problems of construction in Moscow—the largest megacity in Russia. Geotekhnicheskie problemy megapolisov. Vol. 1. Saint-Petersburg, Izd-vo «Gruppa kompaniy Georekonstruktsiya», 2010, 259 p. [In Russ].


3. Huber M. Soil variability and its consequences in geotechnical engineering Doktors der ngenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung (Institut für Geotechnik der Universität Stuttgart), 2013 .302.


4. Ogil'vi A. A. Osnovy inzhenernoy geofiziki. Pod red. V. A. Bogoslovskogo [Basic engineering geophysics. Bogoslovskiy V. A. (Ed.)], Moscow, Nedra, 1990, 502 p.


5. Bolgarov A. G., Roslov Yu. V. Borehole-to-borehole seismic tomography in solution of engineering and geological problems. Tekhnologii seysmorazvedki. 2009, no 1, pp. 105—111. [In Russ].


6. Shishkina M. A., Fokin I. V., Tikhotskiy S. A. Resolution power of borehole-to-borehole beam seismic tomography: arrangement, velocity model, final signal frequency. Information portal of the Institute of the Earth’s Physics, Russian Academy of Sciences. URL: http://www.ifz.ru/lab202/inverse-problems/tomo-resolution/.


7. Shishkina M. A., Fokin I. V., Tikhotskiy S. A. Resolution capability of borehole-to-borehole beam seismic tomography. Tekhnologii seysmorazvedki. 2015. no 1, pp. 5—21. [In Russ].


8. Dorokhin K. A., Boyko O. V. Seismoacoustic monitoring to assess the quality of the execution of protective structures and compensatory strengthening of the soil rock. 14th conference and exhibition on engineering and mining geophysics 2018. lmaty, 2018, pp. 56—70.


9. Arkhipov A. G. Seismic diagnostics of natural and artificial soil. Perspektivy razvitiya inzhenernykh izyskaniy v stroitel'stve v Rossii. Saint-Petersburg, Izd-vo NMSU Gornyy, 2015, pp. 162—166. [In Russ].


10. Hamid N. Alsadi Seismic Hydrocarbon Exploration: 2D and 3D Techniques. Advanced in Oil and Gas Exploration and Production. Springer International Publishing Switzerland. 2017. . 325.


11. Dobróka M., Szegedi H. On the Generalization of Seismic Tomography Algorithms, American Journal of Computational Mathematics, 2014, Vol. 4. No. 1, pp. 37—46.


12. Kubota K., Kiho K., Mizohata S., Murakami F. Development of directional drilling system and measurement method in the borehole application of seismic tomography between surface and the borehole. 10th Asian Regional Conference of IAEG. 2015 URL: http://www.jseg. or.jp/2015ARC/data/TP4/Tp4-P05_1080009_1510841.pdf.


13. Li Y., Hewett B. Borehole seismic quantitative diagnosis of a seismic velocity model for 3D seismic imaging of subsurface structures. EAGE. Geophysical Prospecting, 2014, Vol. 62, pp. 719—739.

Site map