Аuthorization:
Login:
Password:
  















Detailed information

 

SCIENTIFIC AND METHODICAL DESIGN FRAMEWORK FOR SEPARATE VENTILATION SYSTEMS FOR CLOSED-TYPE STATIONS AND DOUBLE-TRACK SUBWAY TUNNELS



The article reviews briefly the current trends in construction of subways in Russia, which are mostly building of closed-type stations and double-track tunnels. The problem of development and design of ventilation systems for the closed-type stations and double-track tunnels under conditions of the subarctic climate is specified. For the closed-type subway station with the double-track tunnel, the relations between the train heat buildup along the platform–tunnel section and the length of the double-track tunnel are determined. For the conditions of subways in Novosibirsk, Moscow and Baku, the relations between the seasonal heat flows from the station halls to soil and the thermal conductivity coefficient of soil are found. Furthermore, the heat exchange between the passenger platform and the double-track tunnel through a baffle is related with the two-train movement as well as with the air temperatures at the platform and in the tunnel. Total heat emission at the station is determined as function of the station occurrence depth and season. The heat exchange versus occurrence depth of the closed-type station is estimated. Permissible range of air recirculation (%) in the total air exchange is calculated subject to the occurrence depth of the station. The separate ventilation scheme is presented, as well as the modes and equipment requirements for the separate ventilation system are substantiated.



: 1
2019
ISBN: 0236-1493
УДК: 628.8+622.4+625.042
DOI: 10.25018/0236-1493-2019-01-0-84-96
Authors: Kiyanitsa L. A.

Authors' Information:
Kiyanitsa L.A., Graduate Student, Engineer, е-mail: lavrentij.kijanitza@yandex.ru,
Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences,
630091, Novosibirsk, Russia.

Key words:
Subway, closed-type station, excess heat, air exchange, recirculation, separate ventilation system, ventilation mode.

References:

1. Mel'nik A. P., Mel'nik G. A., Polyankin A. G. Vnedrenie sovremennykh tekhnologiy pri stroitel'stve podzemnogo uchastka gorodskoy vneulichnoy transportnoy sistemy v Moskve [Introduction of modern technologies in construction of underground space interval of the off-street transportation system in Moscow], Metro i tonneli. 2013, no 1, pp. 12—14. [In Russ].


2. Starkov A. Yu. Tekhnologiya stroitel'stva dvukhputnogo peregonnogo tonnelya Sankt-Peterburgskogo metropolitena [Technology of double-track main line tunnel construction in the Saint-Petersburg Metro], Metro i tonneli. 2011, no 2, pp. 8—9. [In Russ].


3. Krasyuk A. M., Lugin I. V., Alferova E. L., Kiyanitsa L. A. Evaluation of ventilation flow charts for double-line subway tunnels without air chambers, Journal of mining science, 2016. vol. 52. No 4, pp. 740—751.


4. SP 120.13330.2012. Aktualizirovannaya redaktsiya SNiP 32-02-2003 [SP 120.13330.2012. Updated edition Construction norms and regulations SNiP 32-02-2003], Moscow, 2013, 260 p.


5. SP 2.5.2623-10 Sanitarnye pravila ekspluatatsii metropolitenov. Izmeneniya i dopolneniya No 1 k SP 2.5.1337-03 [SP 2.5.2623-10 Sanitary regulations for subway operation. Changes and amendments No. 1 to SP 2.5.1337-03], Moscow, 2010, 15 p.


6. Kuznetsov A. S., Lukin S. M. Ob odnom podkhode k raschetu vozdukhoraspredeleniya v rudnichnykh ventilyatsionnykh setyakh [An approach to calculation of air distribution in mine ventilation networks], Upravlenie gazodinamicheskimi yavleniyami v shakhtakhCollection of scientific papers. Novosibirsk, IGD SO AN SSSR, 1986, pp. 37—39. [In Russ].


7. Tsodikov V. YA. Ventilyatsiya i teplosnabzhenie metropolitenov. Izd. 2-e [Ventilation and heating in subways, 2nd edition], Moscow, Nedra, 1975, 568 p.


8. Krasyuk A. M. Tonnel'naya ventilyatsiya metropolitenov [Subway tunnel ventilation], Novosibirsk, Nauka, 2006, 164 p.


9. Lugin I. V., Alferova E. L. Vliyanie godovoy tsiklichnosti izmeneniya teplovogo potoka v grunt na raschetnyy teplovoy balans dvukhputnogo tonnelya metropolitena [Influence of seasonal cycling of heat flow in soil on estimated temperature balance in double-track subway tunnel], Interekspo Geo-Sibir'. 2016, vol. 2, no 3, pp. 191—196. [In Russ].


10. P'yankova A. Yu. Prognozirovanie teplovykh rezhimov podzemnykh sooruzheniy metropolitenov melkogo zalozheniya v usloviyakh Zapadnoy Sibiri [Prediction of thermal conditions in underground structure of shallow subway in West Siberia], Candidate’s thesis, Novosibirsk, 2016, 211 p.


11. Kiyanitsa L. A., Lugin I. V. Teplo-vlazhnostnyy balans kak opredelyayushchiy raschetnyy parametr razdel'noy ventilyatsii metropolitena so stantsiyami zakrytogo tipa [Heat-and-moisture balance as a key design parameter of separate ventilation in subways with closed-type stations], Fundamental'nye i prikladnye voprosy gornykh nauk. 2016, no 3, vol. 2, pp. 86—91. [In Russ].


12. Fedorova N. N., Val'ger S. A., Danilov M. N., Zakharova Yu. V. Osnovy raboty v ANSYS 17 [Basics of working in ANSYS 17], Moscow, DMK Press, 2017, 210 p.


13. Krasyuk A. M., Lugin I. V., Pavlov S. A. Patent RU 2556558, MPK E 21 F 1/08. 10.07.2015.


Back
Site map