uthorization:
Login:
Password:
  















 

Detailed information

 

AN EXPERIMENTAL AND THEORETICAL FRAMEWORK OF NONLINEAR GEOTOMOGRAPHY. PART I: RESEARCH PROBLEM STATEMENT AND JUSTIFICATION



The article formulates a topical problem of development of an experimental and theoretical framework for implementing nonlinear geotomography using pendulum waves towards quantitative stress–strain diagnostics and control in hierarchical block structures of rock masses. Finding a solution to this problem is of great practical significance in design and deployment of the next-level integrated monitoring systems of geomechanical and geodynamic safety in the active subsoil use regions in Siberia (Norilsk,
Yakutia, Kuzbass). Using the coefficient of blast or earthquake-induced load by Academician Sadovsky allows recording not more than 1–5% of elastic energy in focal zones. Considerable energy is consumed by propagation of nonlinear deformation waves and formation of stress zones. The basic information about these processes is given by the dynamic and kinematic characteristics of pendulum waves. This part of the article shows that currently accumulated experience of experimental and analytical research and applications is sufficient to expand capabilities of classical geotomography by using elastic pendulum-type waves characterized by wide range of velocities.

This study was supported by the Russian Science Foundation, Project No. 17-17-01282.


: 1
2019
ISBN: 0236-1493
: 550.3 + 622
DOI: 10.25018/0236-1493-2019-01-0-5-25
Authors: Oparin V. N., Adushkin V. V., Usol'tseva O. M., etc.

Authors' Information:
Oparin V.N. (1), Corresponding Member of Russian Academy of Sciences,
Doctor of Physical and Mathematical Sciences, e-mail: oparin@misd.ru,
Adushkin V.V. (1,2), cademician of Russian Academy of Sciences,
Vostrikov V.I. (1), Candidate of Technical Sciences, Leading Researcher,
Usol'tseva O.M. (1),
Mulev S.N., Head of Laboratory, JSC Research Institute of Mining Geomechanics
and Mine Surveying-Interdisciplinary Research Center VNIMI,
199106, Saint-Petersburg, Russia, e-mail: vnimioao@yandex.ru,
Yushkin V.F. (1), Doctor of Technical Sciences, Head of Laboratory,
Kiryaeva T.A. (1), Candidate of Technical Sciences, Senior Researcher,
Potapov V.P. (1,3), Doctor of Technical Sciences, Professor,
1) Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences,
630091, Novosibirsk, Russia,
2) Institute of Geosphere Dynamics of Russian Academy of Sciences, 119334, Moscow, Russia,
3) Institute of computer technology, Kemerovo branch, Siberian Branch
of Russian Academy of Sciences, 650025, Kemerovo, Russia.

Key words:
Active and passive seismic tomography techniques, pendulum waves, focal zones of disastrous events, nonlinear deformation wave processes, ill-posed (by A.N. Tikhonov) or conditionally correct (by M.M. Lavrentiev) problems in mathematical physics and geophysics, blast or earthquake-induced load coefficient by M.A. Sadovsky, eikonal and its analog for pendulum waves, long-range effect of blasting by SadovskyAdushkin.

References:

1. Seysmicheskaya tomografiya. Pod red. T. Noleta [Seismic tomography. Nolet T. (Ed.)], Moscow, Mir, 1990, 415 p.


2. Gurvich I. I., Boganik G. N. Seysmicheskaya razvedka [Seismic exploration], Moscow, Nedra, 1980, 551 p.


3. Puzyrev N. N. Metody seysmicheskikh issledovaniy [Methods of seismic survey], Novosibirsk, Nauka, 1992, 233 p.


4. Petrashen' G. I. Rasprostranenie voln v anizotropnykh uprugikh sredakh [Wave propagation in anisotropic elastic media], Leningrad, Nauka, 1980, 280 p.


5. Sedov L. I. Mekhanika sploshnoy sredy [Continuum mechanics], vol. 1, 2. Moscow, Nauka, 1970.


6. Guzev M. A., Makarov V. V. Deformirovanie i razrushenie sil'no szhatykh gornykh porod vokrug vyrabotok [Deformation and failure of rocks under high compression around mine openings], Vladivostok, Dal'nauka, 2007, 232 p.


7. Kurlenya M. V., Oparin V. N. Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-deformirovannogo sostoyaniya massivov gornykh porod [Borehole geophysical methods for stress–strain diagnostics and control in rock masses], Novosibirsk, Nauka, 1999, 335 p.


8. Adushkin V. V., Oparin V. N. Ot yavleniya znakoperemennoy reaktsii gornykh porod na dinamicheskoe vozdeystvie — k volnam mayatnikovogo tipa v napryazhennykh geosredakh [From the alternating response of rock to dynamic impacts—to pendulum waves in high-stress geomedia], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. part I. 2012, no 2, pp. 3—27; part II. 2013, no 2, pp. 3—46; part III. 2014, no 4, pp. 10—38; part IV. 2016, no 1, pp. 3—49. [In Russ].


9. Oparin V. N., Yushkin V. F., Porokhovskiy N. N., Grishin A. N., Rublev D. E., Kulinich N. A., Yushkin A. V. O vliyanii massovogo vzryva v kar'ere stroitel'nogo kamnya na formirovanie spektra seysmicheskikh voln [ Influence of large-scale blast in building stone quarry on seismic wave spectrum], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no 5, pp. 74—89. [In Russ].


10. Oparin V. N., Yushkin V. F., Rublev D. E., Kulinich N. A., Yushkin A. V. O verifikatsii kinematicheskogo vyrazheniya dlya voln mayatnikovogo tipa po dannym seysmicheskikh izmereniy v usloviyakh rudnika Tashtagol'skiy i mramornogo kar'era Iskitimskiy [Verification of kinematic expression of pendulum waves based on the seismic measurements in Tashtagol Mine and Iskitim marble quarry], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no 2, pp. 3—23. [In Russ].


11. Oparin V. N., Simonov B. F., Yushkin V. F., Vostrikov V. I., Pogarskiy Yu. V., Nazarov L. A. Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh [Geomechanical and Technical Bases of Enhancement of Oil Recovery in Vibration Wave Technology], Novosibirsk, Nauka, 2010, 404 p.


12. Sher E. N., Aleksandrova N. I., Ayzenberg-Stepanenko M. V., Chernikov A. G. Vliyanie ierarkhicheskoy struktury blochnykh gornykh porod na osobennosti rasprostraneniya seysmicheskikh voln [Effect of hierarchical block structure on seismic wave propagation in rock mass], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2007, no 6, pp. 20—28. [In Russ].


13. Bagaev S. N., Oparin V. N., Orlov V. A., Panov S. V. O volnakh mayatnikovogo tipa i metode ikh vydeleniya ot krupnykh zemletryaseniy po zapisyam lazernogo deformografa [Pendulum waves and their detection under large earthquakes in laser deformograph records], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2010, no 3, pp. 3—11. [In Russ].


14. Aleksandrova N. I., Chernikov A. G., Sher E. N. O zatukhanii mayatnikovykh voln v blochnom massive gornykh porod [Attenuation of pendulum waves in block rock mass], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2006, no 5, pp. 67—74. [In Russ].


15. Aleksandrova N. I. Lektsii po teme «Mayatnikovye volny» v ramkakh kursa «Nelineynaya geomekhanika»: uchebnoe posobie [Lectures on Pendulum Waves within the Course of Nonlinear Geomechanics: Educational aid], Novosibirsk, IGD SO RAN, 2012, 72 p.


16. Oparin V. N., Timonin V. V., Karpov V. N. Kolichestvennaya otsenka effektivnosti protsessa razrusheniya gornykh porod pri udarno-vrashchatel'nom burenii skvazhin [Quantitative assessment of rock destruction efficiency in rotary–percussive drilling], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no 6, pp. 60—74. [In Russ].


17. Oparin V. N., Timonin V. V., Karpov V. N., Smolyanitskiy B. N. O primenenii energeticheskogo krite-
riya ob"emnogo razrusheniya gornykh porod pri sovershenstvovanii tekhnologii udarno-vrashchatel'nogo bureniya skvazhin [Application of energy-based volumetric rock destruction criterion in improvement of rotary–percussion drilling technology], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 6, pp. 81—104. [In Russ].


18. Oparin V. N. K teoreticheskim osnovam opisaniya vzaimodeystviya geomekhanicheskikh i fiziko-khimicheskikh protsessov v ugol'nykh plastakh [Theoretical framework for description of interaction between geomechanical and physicochemical processes in coal seams], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 2, pp. 3—19. [In Russ].


19. Oparin V. N., Adushkin V. V., Kiryaeva T. A., Potapov V. P., Cherepov A. A., Tyukhrin V. G., Glumov A. V. O vliyanii voln mayatnikovogo tipa ot zemletryaseniy na gazodinamicheskuyu aktivnost' ugol'nykh shakht Kuzbassa [Influence of pendulum waves of earthquakes on gas-dynamic activity in coal mines in Kuzbass], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2018, no 1, pp. 3—15. [In Russ].


20. Oparin V. N., Tapsiev A. P., Vostrikov V. I., Usol'tseva O. M., Arshavskiy V. V., Zhilkina N. F., Babkin E. A., Samorodov B. N., Nagovitsin Yu. N., Smolov K. V. O vozmozhnykh prichinakh uvelicheniya seysmicheskoy aktivnosti shakhtnykh poley rudnikov «Oktyabr'skiy» i «Taymyrskiy» Noril'skogo mestorozhdeniya[Possible causes of increase in seismic activity in Oktyabrsky and Taimyrsky mine fields of the Norilsk deposit], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. part I. 2004, no 4, pp. 3—22; part II. 2004, no 5, pp. 3—25; part III. 2004, no 6, pp. 5—22; part IV. 2005, no 1, pp. 3—8. [In Russ].


21. Oparin V. N., Emanov A. F., Vostrikov V. I., Tsibizov L. V. O kinematicheskikh osobennostyakh razvitiya seysmoemisionnykh protsessov pri otrabotke ugol'nykh mestorozhdeniy Kuzbassa [Kinematic features of seismic emission processes in coal mining in Kuzbass], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2013, no 4, pp. 3—22. [In Russ].


22. Kurlenya M. V., Oparin V. N., Vostrikov V. I. O formirovanii uprugikh volnovykh paketov pri impul'snom vozbuzhdenii blochnykh sred. Volny mayatnikovogo tipa ϑμ [Generation of elastic wave packages under pulsed excitation of block media. Pendulum-type waves ϑμ], Doklady Akademii nauk. 1993, vol. 333, no 4, pp. 512—521. [In Russ].


23. Kurlenya M. V., Oparin V. N., Vostrikov V. I. Volny mayatnikovogo tipa [Pendulum-type waves], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. part I. 1996, no 3, pp. 3—8; part II. 1996, no 4, pp. 3—39; part III. 1996, no 5, pp. 3—27. [In Russ].


24. Shemyakin E. I. Dinamicheskie zadachi teorii uprugosti i plastichnosti [Dynamic problems of elasticity and plasticity], Moscow, NNTSGP IGD im. A.A. Skochinskogo, 2007, 207 p.


25. Lavrent'ev M. M., Zerkal' S. M., Trofimov O. E. Chislennoe modelirovanie v tomografii i uslovno-korrektnye zadachi [Numerical modeling in tomography and conditionally correct problems], Novosibirsk, Izd-vo IDMI NGU, 1999, 171 p.


26. Khelgason S. M. Preobrazovanie Radona [The Radon transform], Moscow, Mir, 1983, 150 p.


27. Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach [Methods of solving ill-posed problems], Moscow, Nauka, 1979, 285 p.


28. Lavrent'ev M. M. Uslovno-korrektnye zadachi dlya differentsial'nykh uravneniy [Conditionally correct problems for differential equations], Novosibirsk, NGU, 1973, 71 p.


29. Tikhonov A. N., Arsenin V. Ya., Timonov A. A. Matematicheskie zadachi komp'yuternoy tomografii [Mathematical problems of computer-aided tomography], Moscow, Nauka, 1987, 535 p.


30. Lavrent'ev M. M., Romanov V. S., Shishatskiy S. P. Nekorrektnye zadachi matematicheskoy fiziki i analiza [Ill-posed problems in mathematical physics and analysis], Novosibirsk, Nauka, 1980, 286 p.


31. Alekseev A. S., Lavrent'ev M. M., Mukhometov R. G., Romanov V. G. Chislennyy metod resheniya trekhmernoy obratnoy kinematicheskoy zadachi seysmiki [Numerical method of solving 3D inverse kinematic problem of seismology], Matematicheskie problemy geofiziki. issue 1. Novosibirsk, VTS SO AN SSSR, 1969, pp. 179—201.


32. Alekseev A. S., Tsibul'chik G. M. Matematicheskie modeli seysmorazvedki [Mathematical models of seismic exploration], Aktual'nye problemy vychislitel'noy matematiki i matematicheskogo modelirovaniya. Novosibirsk, Nauka, 1985, pp. 81—108.


33. Shemyakin E. I., Kurlenya M. V., Oparin V. N., Reva V. N., Rozenbaum N. A. Opening No. 400, USSR. 1992.


34. Shemyakin E. I., Fisenko G. L., Kurlenya M. V., Oparin V. N. Effekt zonal'noy dezintegratsii gornykh porod vokrug podzemnykh vyrabotok [Phenomenon of zonal rock disintegration around underground openings], Doklady Akademii nauk. 1986. vol. 289, no 5, pp. 1088—1094. [In Russ].


35. Oparin V. N., Kurlenya M. V. O skorostnom razreze Zemli po Gutenbergu i vozmozhnom ego geomekhanicheskom ob"yasnenii [Gutenberg velocity section of the earth and its possible geomechanical explanation], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. part I. 1994, no 2, pp. 14—26; part II. 1994, no 3, pp. 44—57; part III. 1994, no 4, pp. 20—33; part IV. 1994, no 6, pp. 30—58. [In Russ].


36. Oparin V. N. Masshtabnyy faktor yavleniya zonal'noy dezintegratsii gornykh porod i stratifikatsiya nedr Luny po seysmicheskim dannym [Scale factor of zonal disintegration of rocks and stratification of the Moon’s interior based on seismic data], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1997, no 6, pp. 3—17. [In Russ].


37. Sadovskiy M. A., Kedrov O. K., Pasechnik I. P. O seysmicheskoy energii i ob"eme ochagov pri korovykh zemletryaseniyakh i podzemnykh vzryvakh [Seismic energy and volume of sources of crustal earthquakes and underground blasts], Doklady Akademii nauk. 1985, vol. 283, no 5, pp. 1153—1156. [In Russ].


38. Zagorskiy L. S., Shkuratnik V. L. Metod opredeleniya vertikal'nogo seysmicheskogo razreza massiva gornykh porod s ispol'zovaniem voln tipa Releya [Method to determine vertical seismic section in rock mass using Raleigh-type waves], Akusticheskiy zhurnal. 2013, vol. 59, no 2, pp. 222—231. [In Russ].


39. Zagorskiy L. S., Shkuratnik V. L. Primenenie pochti-periodicheskikh funktsiy dlya seysmicheskogo profilirovaniya [Using almost periodic functions in seismic profiling], Akusticheskiy zhurnal. 2014, vol. 60, no 3, pp. 272—278. [In Russ].


40. Aleksandrova N. I. Nestatsionarnye volnovye protsessy v blochnykh i uprugikh sredakh s uchetom vyazkosti i vneshnego sukhogo treniya [Nonstationary wave processes in block and elastic media with respect to viscosity and external dry friction], Doctor’s thesis, Novosibirsk, IG iL SO RAN, 2015, 42 p.


41. Wang K. B., Pan Y. S. Numerical simulation of rock burst processes of a circular tunnel at different lateral pressure coefficients, Rock and Soil Mechanics, 2010, 31, no 6.


42. Wang K., Pan Y. S., Oparin V., Aleksandrova N., Chanyshev A. Energy conversion and transferrin block-rock media on dynamics propogation. Proc. Of the 2018 Europen Rock Mechanics Symposium (EUROCK 2018, Saint Petersburg, Russia, 22—26 may 2018). Vol. 2. 2018. CRC Press, Taylor & Francis Group, London, UR, pp. 1515—1520.


43. Qian Qihu, Zou Xiaoping. Noneuclidem continuum model of the zonal disintegration of surrounding rock around a deep circular tunnel in nondydrostatic pressure state, Journal of Mining Science, 2011, 47 (1).


Back
Site map