Detailed information



The principal current approaches to modeling operation of pneumatic and hydraulic machines are specified: 3D modeling using various numerical methods and component-based modeling of complex system using graphs. The procedure and results of 3D finite-volume modeling of DTH hammer operation are presented. The specialized procedure of computer modeling of DTH hammer operation makes it possible to eliminate the transient behavior and to determine parameters of the pneumatic machine in the nominal mode operation. The set problem is divided into two subproblems: determination of recoil velocity of the hammering unit after percussion using the percussive interaction model in SolidWorksMotion and determination of compressed-air pressure variation in the power and idle stroke chambers using the gas-dynamic model in FlowVision. The analysis includes one cycle of the hammering unit travel starting from the moment of the hammer head hit on the anvil. After modeling using the developed procedure and three cycles of approximation, time dependences of pressures in the chambers of the DTH hammer and the hammering unit velocity are obtained. It is found that high residual pressure occurs in the DTH hammer chambers: 25% in the power stroke chamber and round 10% in the idle stroke chamber. This worsens the performance of the DTH hammer as a result of reduction in forces affecting the hammering unit due to the pressure difference in the chambers. Exhaust from the chambers is unsatisfactory; for this reason, it is required to expand the exhaust lines in the chambers and to decrease local hydraulic resistances in them. The adequacy of the computer modeling results is confirmed by comparing them with the findings of the known researches.

: 7
: 622.001.5
DOI: 10.25018/0236-1493-2018-7-0-131-138
Authors: Khrutskiy A. A., Oshchepkov V. S.

Authors' Information:
Khrutskiy A.A., Candidate of Technical Sciences,
Assistant Professor, e-mail: acaxa@outlook.com,
Oshchepkov V.S., Masters Degree Student,
e-mail: antapka02@ukr.net,
Krivyi Rih National University, 50027, Kryvyi Rih, Ukraine.

Key words:
omputer modeling, numerical methods, pneumatic machine, down-the-hole hammer, interdisciplinary model, finite volume method, gas-dynamic problems with mobile body, pre-blow velocity.


1. Aleksandrov E. V., Sokolinskiy V. B. Prikladnaya teoriya i raschety udarnykh sistem. Monografiya [Applied theory and calculations of shock systems. Monograph], Moscow, Nauka, 1969, 201 p.

2. Gallager R. Metod konechnykh elementov. Osnovy: Per. s angl. [The finite element method. Bases. English–Russian translation], Moscow, Mir, 1984, 428 p.

3. FlowVision documentation. URL: https://flowvision.ru/ index.php/public- downloads/category/8-dokumentatsiya-flowvision.

4. Zenkevich O., Morgan K. Konechnye elementy i approksimatsiya: Per. s angl. [Finite elements and approximation. English–Russian translation], Moscow, Mir, 1986, 309 p.

5. Kolesov Yu. B. Ob"ektno-orientirovannoe modelirovanie slozhnykh dinamicheskikh sistem [Objectoriented modeling of complex dynamic systems], Saint-Petersburg, Izd-vo SPbGPU, 2004, 240 p.

6. Lipin A. A. Uluchshenie tekhniko-ekspluatatsionnykh pokazateley pnevmoudarnikov P-105 (P-125) [Improvement of technical and operational indicators of airstrikes P-105 (P-125)] Povyshenie effektivnosti pnevmoudarnykh burovykh mashin. Novosibirsk: IGD SO AN SSSR, 1987, pp. 10—18. [In Russ].

7. Marchuk G. I., Agoshkov V. I. Vvedenie v proektsionno-setochnye metody [(Introduction to the projection-grid methods], Moscow, Nauka, 1981, 210 p.

8. Nikitin K. D. Nelineynyy metod konechnykh ob"emov dlya zadach mnogofaznoy fil'tratsii [Nonlinear finite volume method for multiphase filtration problems]. Matematicheskoe modelirovanie. 2010, vol. 22, no 11, pp. 131—147. [In Russ].

9. Sokolinskiy V. B. Mashiny udarnogo razrusheniya [Machines of impact destruction], Moscow, Mashinostorenie, 1982, 185 p.

10. Khrutskiy A. A., Oshchepkov V. S. Komp'yuternoe modelirovanie rabochego tsikla pnevmaticheskogo vibratora bezudarnogo deystviya [Computer simulation of the working cycle of a pneumatic impact-free vibrator]. Mezhdunarodnaya nauchno-tekhnicheskaya internet-konferentsiya «Sovremennye vibratsionnye tekhnologii, mashiny, oborudovanie i dinamicheskie protsessy v nikh», Vinnitsa, 28—30 November 2016, URL: http://vibrokonf.vntu.edu.ua/Articles%202016/KR_GR.pdf. [In Russ].

11. Shakhtorin I. O., Timonin V. V. Dovodka mashin udarnogo deystviya pri pomoshchi sovremennogo programmnogo obespecheniya [Fine-tuning of percussion machines with the help of modern software]. Materialy vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem «Sovremennye problemy v gornom dele i metody modelirovaniya gorno-geologicheskikh usloviy pri razrabotke mestorozhdeniy poleznykh iskopaemykh»,November 17—19, 2015 Kuzbass State technical University named after T.F. Gorbachev. URL: http://science.kuzstu.ru/wp-content/Events/Conference/Other/ 2015/gd/gd2015/pages/Articles/1/Shaxtorin.pdf. [In Russ].

12. Anderson W. K., Thomas J. L., van Leer B. Comparison of Finite Volume Flux Vector Splittings for the Euler Equations. AIAA J. 1986. Vol. 24, No9. Pp. 1453—1460

13. Liu G. R., Liu M. B. Smoothed Particle Hydrodynamics. A Meshfree Particle Method, 2003. 472 p.

14. Möller M., Charypar D., Gross M. Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH. Eurographics symposium on Computer animation. Aire-la- Ville, 2003. p. 154—159.

15. Monaghan J. J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics. Clayton, 1992. p. 543—574.

16. Weiss J. M., Maruszewski J. P., Smith W. A. Imlicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid. AIAA J. 1999. Vol 37, No. 1. Pp. 29—36.

Site map