Detailed information



The common cause of errors in long hole boring is different nature vibrations. The known methods and technological approaches aimed to reduce vibrations in a manufacturing system are insufficiently effective in modification of vibration parameters during boring. The current mathematical models of errors in long hole boring allows finding relations of some process parameters which ensure the most favorable conditions of work, while the models of facet pattern formation are empirical, which limits their applicability. The authors propose a mathematical model of the facet pattern formation as the event of technologically inherited nonstraightness Δ of the work piece hole axis. The calculations based on the proposed mathematical model yield that the value of Δ governs the process of facet pattern formation. An increase in Δ results in the higher amplitude fluctuation of the force moment M0 in the center of masses of the boring head, which causes transverse vibrations of the tool. The value of the work piece axis nonstraightness Δ also conditions the facet pattern degree m (number of facets) and the value of circularity deviation H of the hole area profile. The theory is confirmed by the computer-aided modeling of fine boring of long hole in a barrel of the extendible autocrane beam cylinder. It is suggested to modernize the boring head design by equipping it with the guide keys with longitudinal astragal molding. The radius of

the molding is to be set based on the length e of the guide key and the nonstraightness Δ of the work piece hole axis from the relation: r = e2/Δ.

: 7
УДК: 621.9.015
DOI: 10.25018/0236-1493-2018-7-0-108-115
Authors: Gorelova A. Yu., Kristal M. G.

Authors' Information:
Gorelova A.Yu., Graduate Student, e-mail: forasyoo@gmail.com,
Kristal M.G., Doctor of Technical Sciences, Professor, e-mail: crysmar@mail.ru,
Volgograd State Technical University, 400005, Volgograd, Russia.

Key words:
Facet pattern in hole, boring errors, computer-aided modeling of boring, mathematical model of boring.


1. Gorelova A. Yu., Kristal' M. G. Instrument dlya obrabotki gil'z gidrostoek, osnashchennyy stabilizatorom [Hole making tool equipped with a stabilizer for hydraulic cylinder barrels]. Gornyy informatsionno-analiticheskiy byulleten'. 2015, no 9, pp. 131—135. [In Russ].

2. Gorelova A. Yu., Kristal' M. G. Instrument dlya obrabotki glubokikh otverstiy [Long hole making tool]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenta). 2015, no 3, pp. 75—81. [In Russ].

3. Kirsanov S. V. Obrabotka glubokikh otverstiy v mashinostroenii: spravochnik [Long hole making in machine building: Handbook], Moscow, Mashinostroenie, 2010, 344 p.

4. Kozochkin M. P., Sabirov F. S., Porvatov A. N., Bogan A. N. Vibratsionnyy kontrol' tekhnologicheskogo oborudovaniya v proizvodstve [Vibration control of process equipment in industry]. Vestnik MGTU «Stankin». 2012, no 4, pp. 8—14. [In Russ].

5. Minkov M. A. Tekhnologiya izgotovleniya glubokikh tochnykh otverstiy [Technology of accurate long hole making], Moscow, Leningrad, Mashinostroenie, 1968, 183 p.

6. Nabatnikov Yu. F. Povyshenie tochnosti izgotovleniya silovykh gidrotsilindrov mekhanizirovannykh krepey putem sovershenstvovaniya tekhnologicheskogo protsessa sborki [Enhancement of manufacturing accuracy of powered support booster jacks by the assembly process improvement], Doctor’s thesis, Moscow, 2012, 262 p.

7. Utkin N. F., Kizhnyaev Yu. N., Pluzhnikov S. K., Shamanin A. A., Drozdov F. M., Nemtsev B. A., Bychkov N. A., Borzov V. F. Obrabotka glubokikh otverstiy [Long hole making operations], Leningrad, Mashinostroenie, 1988, 269 p.

8. Ushakov A. I. Dinamicheskie protsessy pri obrabotke glubokikh otverstiy [Dynamic processes in long hole making operations], Candidate’s thesis, Moscow, 1974, 177 p.

9. Shenderov I. B. Upravlenie kachestvom pri rastachivanii glubokikh otverstiy v interaktivnom tekhnologicheskom protsesse izgotovleniya trubnykh zagotovok [Quality control in long hole making operations in interactive process of manufacturing of tube shells]. Vestnik IzhGTU imeni M.T. Kalashnikova. 2012, no 1, pp. 30—33. [In Russ].

10. Deqing M, Tianrong K, Albert J.S, Zichen C. Magnetorheological fluid-controlled boring bar for chatter suppression. Journal of Materials Processing Technology. 2009. P. 1861—1870.

11. Lu X, Chen F, Altintas Y. Magnetic actuator for active damping of boring bars. Annals of the CIRP. 2014. Pp. 369—372.

12. Matsubara A, Maeda M, Yamaji I. Vibration suppression of boring bar by piezoelectric actuators and LR circuit. CIRP Annals—Manufacturing Technology. 2014. Pp. 373—376.

13. Munoa J., Beudaert X., Dombovari Z., Altintas Y., Budak E., Brecher C., Stepan G. Chatter suppression techniques in metal cutting. CIRP Annals Manufacturing Technology. 2016. Pp. 785—808.

14. Gorelova A. Yu., Pleshakov A. A., Kristal' M. G. Patent RU152126 MPK B23B29/00, 10.05.2015. 15. Mikhik P. Patent RU2365471 MPK B23B29/00, 27.08.2009.

16. Bernd Aschenbach Patent DE 102004024170 A1 Int. Cl. B23C 9/00, B23B 29/12. Die folgenden Andaben sind den vom Anmelder eingereichten Unterlagen entnommen. 01.12.2005.

Site map